OpenSSL as Service

OpenSSL is awesome! Though, requires little manual work to remember all the commands, executing them in a machine that has OpenSSL installed. In this post, I’m about to build an HTTP API over OpenSSL, with the most commonly used commands (and the possibility to extend it further – as required). This will help folks who wants to run OpenSSL in a private network but wants to orchestrate it in their automation workflows.

Background

Ever wanted to automate the TLS (also known as SSL) configuration process for your web application? You know, the sites that served via HTTPS and Chrome shows a green “secure” mark in address bar. Serving site over HTTP is insecure (even for static contents) and major browsers will mark those sites as not secure, Chrome already does that today.

Serving contents via HTTPS involves buying a digital certificate (aka SSL/TLS certificate) from certificate authorities (CA). The process seemed complicated (sometimes expensive too) by many average site owners or developers. Let’s encrypt addressed this hardship and made it painless. It’s an open certificate authority that provides free TLS certificates in an automated and elegant way.

However, free certificates might not be ideal for enterprise scenarios. Enterprise might have a requirement to buy certificate from a specific CA. In many cases, that process is manual and often complicated and slow. Typically, the workflow starts by generating a Certificate Signing request (also known as CSR) which requires generating asymmetric key pair (a public and private key pair). Which is then sent to CA to get a Digital Identity certificate. This doesn’t stop here. Once the certificate is provided by the CA, sometimes (Specially if you are in IIS, .net or Azure world) it’s needed to be converted to a PFX (Personal Information Exchange) file to deploy the certificate to the web server.

PFX (aka PKCS #12) is a file format defines an archive file format for storing many cryptography objects as a single file. It’s used to bundle a private key with it’s X.509 certificate or bundling all the members of a chain of trust. This file may be encrypted and signed. The internal storage containers (aka SafeBags), may also be encrypted and signed.

Generating CSR, converting a Digital Identity certificate to PFX format are often done manually. There are some online services that allows you generating CSRs – via an API or an UI. These are very useful and handy, but not the best fit for an enterprise. Because the private keys need to be shared with the online provider – to generate the CSR. Which leads people to use the vastly popular utility – OpenSSL in their local workstation – generating CSRs. In this article, this is exactly what I am trying to avoid. I wanted to have an API over OpenSSL – so that I can invoke it from my other automation workflow running in the Cloud.

Next, we will see how we can expose the OpenSSL over HTTP API in a Docker container, so we can run the container in our private enterprise network and orchestrate this in our certificate automation workflows.

The Solution Design

We will write a .net core web app, exposing the OpenSSL command via web API. Web API requests will fork OpenSSL process with the command and will return the outcome as web API response.

OpenSSL behind .net core Web API

We are using System.Diagnostics.Process to lunch OpenSSL in our code. This is assuming we will have OpenSSL executable present in our path. Which we will ensure soon with Docker.

        private static StringBuilder ExecuteOpenSsl(string command)
        {
            var logs = new StringBuilder();
            var executableName = "openssl";
            var processInfo = new ProcessStartInfo(executableName)
            {
                Arguments = command,
                UseShellExecute = false,
                RedirectStandardError = true,
                RedirectStandardOutput = true,
                CreateNoWindow = true
            };

            var process = Process.Start(processInfo);
            while (!process.StandardOutput.EndOfStream)
            {
                logs.AppendLine(process.StandardOutput.ReadLine());
            }
            logs.AppendLine(process.StandardError.ReadToEnd());
            return logs;
        }

This is simply kicking off OpenSSL executable with a command and capturing the output (or errors). We can now use this in our Web API controller.

    /// <summary>
    /// The Open SSL API
    /// </summary>
    [Produces("application/json")]
    [Route("api/OpenSsl")]
    public class OpenSslController : Controller
    {
        /// <summary>
        /// Creates a new CSR
        /// </summary>
        /// Payload info
        /// The CSR with private key
        [HttpPost("CSR")]
        public async Task Csr([FromBody] CsrRequestPayload payload)
        {
            var response = await CertificateManager.GenerateCSRAsync(payload);
            return new JsonResult(response);
        }

This snippet only shows one example, where we are receiving a CSR generation request and using the OpenSSL to generate, returning the CSR details (in a base64 encoded string format) as API response.

Other commands are following the same model, so skipping them here.

Building Docker Image

Above snippet assumes that we have OpenSSL installed in the machine and the executable’s path is registered in our system’s path. We will turn that assumption to a fact by installing OpenSSL in our Docker image.

FROM microsoft/aspnetcore:2.0 AS base

RUN apt-get update -y
RUN apt-get install openssl

Here we are using aspnetcore:2.0 as our base image (which is a Linux distribution) and installing OpenSSL right after.

Let’s Run it!

I have built the docker image and published it to Docker Hub. All we need is to run it:

Untitled-1

The default port of the web API is 80, though in this example we will run it on 8080. Let’s open a browser pointing to:

http:localhost:8080/ 

Voila! We have our API’s. Here’s the Swagger UI for the web API.

swagger

And we can test our CSR generation API via Postman:

Postman

The complete code for this web app with Docker file can be found in this GitHub Repository. The Docker image is in Docker Hub.

Thanks for reading.

Zero-Secret application development with Azure Managed Service Identity

Committing the secrets along with application codes to a repository is one of the most commonly made mistakes by many developers. This can get nasty when an application is developed for Cloud deployment. You probably have read the story of checking in AWS S3 secrets to GitHub. The developer corrected the mistake in 5 mins, but still received a hefty invoice because of bots that crawl open source sites, looking for secrets. There are many tools that can scan codes for potential secret leakages, they can be embedded in CI/CD pipeline. These tools do a great job in finding out deliberate or unintentional commits that contains secrets before they get merged to a release/master branch. However, they are not absolutely protecting all potential secrets leaks. Developers still need to be carefully review their codes on every commits.

Azure Managed Service Instance (MSI) can address this problem in a very neat way. MSI has the potential to design application that are secret-less. There is no need to have any secrets (specially secrets for database connection strings, storage keys etc.) at all application codes.

Secret management in application

Let’s recall how we were doing secret management yesterday. Simplicity’s sake, we have a web application that is backed by a SQL server. This means, we almost certainly have a configuration key (SQL Connection String) in our configuration file. If we have storage accounts, we might have the Shared Access Signature (aka SAS token) in our config file.

As we see, we’re adding secrets one after another in our configuration file – in plain text format. We need now, credential scanner tasks in our pipelines, having some local configuration files in place (for local developments) and we need to mitigate the mistakes of checking in secrets to repository.

Azure Key Vault as secret store

Azure Key Vault can simplify these above a lot, and make things much cleaner. We can store the secrets in a Key Vault and in CI/CD pipeline, we can get them from vault and write them in configuration files, just before we publish the application code into the cloud infrastructure. VSTS build and release pipeline have a concept of Library, that can be linked with Key vault secrets, designed just to do that. The configuration file in this case should have some sort of String Placeholders that will be replaced with secrets during CD execution.

The above works great, but you still have a configuration file with all the placeholders for secrets (when you have multiple services that has secrets) – which makes it difficult to manage for local development and cloud developments. An improvement can be keep all the secrets in Key Vault, and let the application load those secrets runtime (during the startup event) directly from the Key vault. This is way easier to manage and also pretty clean solution. The local environment can use a different key vault than production, the configuration logic becomes extremely simpler and the configuration file now have only one secret. That’s a Service Principal secret – which can be used to talk to the key vault during startup.

So we get all the secrets stored in a vault and exactly one secret in our configuration file – nice! But if we accidentally commit this very single secret, all other secrets in vault are also compromised. What we can do to make this more secure? Let’s recap our knowledge about service principals before we draw the solution.

What is Service Principal?

A resource that is secured by Azure AD tenant, can only be accessed by a security principal. A user is granted access to a AD resource on his security principal, known as User Principal. When a service (a piece of software code) wants to access a secure resource, it needs to use a security principal of a Azure AD Application Object. We call them Service Principal. You can think of Service Principals as an instance of an Azure AD Application.applicationA service principal has a secret, often referred as Client Secret. This can be analogous to the password of a user principal. The Service Principal ID (often known as Application ID or Client ID) and Client Secret together can authenticate an application to Azure AD for a secure resource access. In our earlier example, we needed to keep this client secret (the only secret) in our configuration file, to gain access to the Key vault. Client secrets have expiration period that up to the application developers to renew to keep things more secure. In a large solution this can easily turn into a difficult job to keep all the service principal secrets renewed with short expiration time.

Managed Service Identity

Managed Service Identity is explained in Microsoft Documents in details. In layman’s term, MSI literally is a Service Principal, created directly by Azure and it’s client secret is stored and rotated by Azure as well. Therefore it is “managed”. If we create a Azure web app and turn on Manage Service Identity on it (which is just a toggle switch) – Azure will provision an Application Object in AD (Azure Active Directory for the tenant) and create a Service Principal for it and store the client secret somewhere – that we don’t care. This MSI now represents the web application identity in Azure AD.msi

Managed Service Identity can be provisioned in Azure Portal, Azure Power-Shell or Azure CLI as below:

az login
az group create --name myResourceGroup --location westus
az appservice plan create --name myPlan --resource-group myResourceGroup
       --sku S1
az webapp create --name myApp --plan myPlan
       --resource-group myResourceGroup
az webapp identity assign
       --name myApp --resource-group myResourceGroup

Or via Azure Resource Manager Template:

{
"apiVersion": "2016-08-01",
"type": "Microsoft.Web/sites",
"name": "[variables('appName')]",
"location": "[resourceGroup().location]",
"identity": {
"type": "SystemAssigned"
},
"properties": {
"name": "[variables('appName')]",
"serverFarmId": "[resourceId('Microsoft.Web/serverfarms', variables('hostingPlanName'))]",
"hostingEnvironment": "",
"clientAffinityEnabled": false,
"alwaysOn": true
},
"dependsOn": [
"[resourceId('Microsoft.Web/serverfarms', variables('hostingPlanName'))]"
]}

Going back to our key vault example, with MSI we can now eliminate the client secret of Service Principal from our application code.

But wait! We used to read keys/secrets from Key vault during the application startup, and we needed that client secret for that. How we are going to talk to Key vault now without the secret?

Using MSI from App service

Azure provides couple of environment variables for app services that has MSI enabled.

  • MSI_ENDPOINT
  • MSI_SECRET

The first one is a URL that our application can make a request to, with the MSI_SECRET as parameter and the response will be a access token that will let us talk to the key vault. This sounds a bit complex, but fortunately we don’t need to do that by hand.

Microsoft.Azure.Services.AppAuthentication  library for .NET wraps these complexities for us and provides an easy API to get the access token returned.

We need to add references to the Microsoft.Azure.Services.AppAuthentication and Microsoft.Azure.KeyVault NuGet packages to our application.

Now we can get the access token to communicate to the key vault in our startup like following:


using Microsoft.Azure.Services.AppAuthentication;
using Microsoft.Azure.KeyVault;

// ...

var azureServiceTokenProvider = new AzureServiceTokenProvider();

string accessToken = await azureServiceTokenProvider.GetAccessTokenAsync("https://management.azure.com/");

// OR

var kv = new KeyVaultClient(new KeyVaultClient
.AuthenticationCallback
(azureServiceTokenProvider.KeyVaultTokenCallback));

This is neat, agree? We now have our application configuration file that has no secrets or keys whatsoever. Isn’t it cool?

Step up – activating zero-secret mode

We have managed deploying our web application with zero secret above. However, we still have secrets for SQL database, storage accounts etc. in our key vault, we just don’t have to put them in our configuration files. But they are still there and loaded in startup event of our web application. This is a great improvement, of course. But MSI allows us to take this even better stage.

Azure AD Authentication for Azure Services

To leverage MSI’s full potentials we should use Azure AD authentication (RBAC controls). For instance, we have been using Shared Access Signatures or SQL connection strings to communicate Azure Storage/Service Bus and SQL servers. With AD authentication, we will use a security principal that has a role assignment with Azure RBAC.

Azure gradually enabling AD authentication for resources. As of today (time of writing this blog) the following services/resources supports AD authentication with Managed Service Identity.

Service Resource ID Status Date Assign access
Azure Resource Manager https://management.azure.com/ Available September 2017 Azure portal
PowerShell
Azure CLI
Azure Key Vault https://vault.azure.net Available September 2017
Azure Data Lake https://datalake.azure.net/ Available September 2017
Azure SQL https://database.windows.net/ Available October 2017
Azure Event Hubs https://eventhubs.azure.net Available December 2017
Azure Service Bus https://servicebus.azure.net Available December 2017
Azure Storage https://storage.azure.com/ Preview May 2018

Read more updated info here.

AD authentication finally allows us to completely remove those secrets from Key vaults and directly access to the storage account, Data lake stores, SQL servers with MSI tokens. Let’s see some examples to understand this.

Example: Accessing Storage Queues with MSI

In our earlier example, we talked about the Azure web app, for which we have enabled Managed Service Identity. In this example we will see how we can put a message in Azure Storage Queue using MSI. Assuming our web application name is:

contoso-msi-web-app

Once we have enabled the managed service identity for this web app, Azure provisioned an identity (an AD Application object and a Service Principal for it) with the same name as the web application, i.e. contoso-msi-web-app.

Now we need to set role assignment for this Service Principal so that it can access to the storage account. We can do that in Azure Portal. Go to the Azure Portal IAM blade (the access control page) and add a role for this principal to the storage account. Of course, you can also do that with Power-Shell.

If you are not doing it in Portal, you need to know the ID of the MSI. Here’s how you get that: (in Azure CLI console)


az resource show -n $webApp -g $resourceGroup
--resource-type Microsoft.Web/sites --query identity

You should see an output like following:

{
"principalId": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"tenantId": "xxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxx",
"type": null
}

The Principal ID is what you are after. We can now assign roles for this principal as follows:

$exitingRoleDef = Get-AzureRmRoleAssignment `
                -ObjectId `
                -RoleDefinitionName "Contributor"  `
                -ResourceGroupName "RGP NAME"
            If ($exitingRoleDef -eq $null) {
                New-AzureRmRoleAssignment `
                    -ObjectId  `
                    -RoleDefinitionName "Contributor" `
                    -ResourceGroupName "RGP NAME"
            }

You can run these commands in CD pipeline with Azure Inline Power Shell tasks in VSTS release pipelines.

Let’s write a MSI token helper class.

We will use the Token Helper in a Storage Account helper class.

Now, let’s write a message into the Storage Queue.

Isn’t it awesome?

Another example, this time SQL server

As of now, Azure SQL Database does not support creating logins or users from service principals created from Managed Service Identity. Fortunately, we have workaround. We can add the MSI principal an AAD group as member, and then grant access to the group to the database.

We can use the Azure CLI to create the group and add our MSI to it:

az ad group create --display-name sqlusers --mail-nickname 'NotNeeded'az ad group member add -g sqlusers --member-id xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx

Again, we are using the MSI id as member id parameter here.
Next step, we need to allow this group to access SQL database. PowerShell rescues again:

$query = @"CREATE USER [$adGroupName] FROM EXTERNAL PROVIDER
GO
ALTER ROLE db_owner ADD MEMBER [$adGroupName]
"@
sqlcmd.exe -S "tcp:$sqlServer,1433" `
-N -C -d $database -G -U $sqlAdmin.UserName `
-P $sqlAdmin.GetNetworkCredential().Password `
-Q $query

Let’s write a token helper class for SQL as we did before for storage queue.

We are almost done, now we can run SQL commands from web app like this:

Voila!

Conclusion

Managed Service Identity is awesome and powerful, it really drives application where security of the application are easy to manage over longer period. Specially when you have lots of applications you end up with huge number of service principals. Managing their secrets over time, keeping track of their expiration is a nightmare. Managed Service makes it so beautiful!

 

Thanks for reading!